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Abstract

We investigate the mechanisms of fatigue behavior in nano-crystalline metals at the atomic scale
using empirical force laws and molecular level simulations. A combination of molecular statics
and molecular dynamics was used to deal with the time scale limitations of molecular dynamics.
We show that the main atomistic mechanism of fatigue crack propagation in these materials is
the formation of nano-voids ahead of the main crack. The results obtained for crack advance as a
function of stress intensity amplitude are consistent with experimental studies and a Paris law
exponent of about 2.

Research Objective

Fatigue of metallic materials is an important issue in the general field of mechanical behavior.
In particular, nano-crystalline materials are particularly susceptible to fatigue failure [1,2]. This
constitutes one of the limitations of this new class of metallic materials and the behavior can be
generally attributed to the presence of a large fraction of grain boundary material. The details of
fatigue failure mechanisms are not well understood. Theoretical models have been generally
limited to the macroscopic and meso-scale and no studies have been performed at the atomistic
level, to the best of our knowledge [3-6]. There are two basic reasons why fatigue has not been
studied atomistically, relating to length scale and time scale. In the present work, we show that
with current computing power, we can approach the experimental fatigue length scale of
nm/cycle crack extension. The time scale is more problematic. The detailed mechanism by which
plasticity affects crack advance is not precisely known and therefore there is no clear way to
predict the effects of the unrealistic high cycle lording rates that are possible using molecular
dynamics. This key issue of MD time scale (ns) vs. experimental fatigue time scale (s) is
addressed in the present work using a combination of molecular statics and molecular dynamics.
The combined results of these two techniques are shown to allow the basic understanding of the
essential process of crack advance under cyclic loading. We will concentrate mostly on the
behavior of Ni. The interatomic interactions for this material have been developed on the basis of
first principles data [7] and tested as part of our previous work [8]. Using these potentials, we
have previously studied realistic three dimensional polycrystalline samples of pure Ni under
monotonic loading conditions. In this letter we report the first simulations under cyclic loading,
performed on a digital sample with a columnar grain structure with random misorientations and a
6 nm grain size. Figure 1 shows the rates of crack advance as a function of stress intensity
amplitude obtained from both molecular static and molecular dynamic simulations. These results
are shown together with experimental results by Hanlon, Kwon and Suresh [10]. Figure 2 shows
tip configurations after 26, and 31 cycles. Both configurations are at maximum loading, for the
molecular statics simulations and a stress intensity amplitude of 1.4 MPa sqrt(m).
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Figure 1: Resulting rate of crack advance for both molecular static and molecular dynamic
simulations together with experimental results by Hanlon, Kwon and Suresh [10]

K7 I

Figure 2: tip configurations after 26, and 31 cycles. Each picture is taken at maximum loading,
for the simulations conducted using molecular statics and a stress intensity amplitude of 1.4 MPa
sqrt(m).
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